s-Numbers of integral operators with Hölder continuous kernels over metric compacta
نویسندگان
چکیده
منابع مشابه
On Integral Operators with Operator-Valued Kernels
It is well known that solutions of inhomogeneous differential and integral equations are represented by integral operators. To investigate the stability of solutions, we often use the continuity of corresponding integral operators in the studied function spaces. For instance, the boundedness of Fourier multiplier operators plays a crucial role in the theory of linear PDE’s, especially in the st...
متن کاملContinuous Occupancy Mapping with Integral Kernels
We address the problem of building a continuous occupancy representation of the environment with ranging sensors. Observations from such sensors provide two types of information: a line segment or a beam indicating no returns along them (free-space); a point or return at the end of the segment representing an occupied surface. To model these two types of observations in a principled statistical...
متن کاملCommutators of integral operators with variable kernels on Hardy spaces
Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...
متن کاملEntropy Numbers, Operators and Support Vector Kernels
We derive new bounds for the generalization error of feature space machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs are based on a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinit...
متن کاملDirectional Hölder Metric Regularity
This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1988
ISSN: 0022-1236
DOI: 10.1016/0022-1236(88)90112-7